
PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 1

Introductory lecture no 5 < lecture realized in 2006, now rendered in English>

on Basics of Data Processing
(Matlab 6.x 7.x environment’s examples on visualization topics)

Within realized lectures, concerning presentation of some of transformation functions,

concerning data of 2D images with use of Image Processing Toolbox, one decided to present

some of the examples of applications of previously related group of functions, as well as, of

some specific syntax of commands, applied in handling of 1D/2D/3D data. First of all, one

decided to present example of code, used in generation of fractal objects, which is similar to

the famous fern leaf:

Fig.1Exemplary given code fern.m, used in generation of the famous fern leaf

Some specific solution of the function presented above (fig.1) is the application of two

indexed maps mapsA and mapsB in task of generation of set of points, which iteratively form

the related object. These maps are to be concatenated with use of [] operand, both in

animation generation process, during iteratively plot fractal object, and in final generation of

bitmap im_final, which is produced outside of the global for. loop.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 2

Such a solution gives possibility for more flexible use, definition, as well as, on-the-fly

redefinition of color palette. Alternatively adopted solution would be much more difficult

in implementation of for instance data handling, in their RGB or HSV representation.

The very algorithm of generation of the fractal object, in spite of the fact, that it has been

called deterministic algorithm, has been provided with random set of initially imposed

conditions. Wandering of point’s coordinates on XY reference plane has been described here

with especially simple, linear combinations of coefficients, as well as, of currently taken

coordinates:

FyDxCy

EyBxAx

iii

iii

++=

++=

+

+

**

**

1

1
 (1)

With some other, distinct values of elements of the coefficient tables A..F, one actually

obtained another commonly known algorithm, for generation of another fractal object:

Fig.2Exemplary given code drag.m, used in generation of the famous dragon object

At first glance, the above implementation (on figure 2) possess two times shorter vectors

A...F. (in numbers of their row elements). The deriving process, due to which such a famous

fractal object has been produced, is rather vague and unknown. What is relevant is the fact,

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 3

that in most cases, any randomly or experimentally introduced slight alternations within

elements of the A...F matrices lead mostly to abrupt deteriorations or even divergence of

quite robust and steady algorithms, based on (1) relationship. Finally, the use of 3-elements’

rows in A..F matrices, with some specifically set coefficients (reciprocally occurred values

of zeros and 0.5), gives possibility for generation of the famous Sierpinsky triangle:

Fig. 3Exemplary given code triangle.m, in generation of the famous Sierpinsky triangle

In all the algorithms, which have been so far presented above, one protects the wandering

point (i.e its iteratively resolved coordinates) from passing outlines of the screen (namely: one

prohibits it from passing the borders of the physically imposed size of the two maps: mapsA

and mapsB). A simple scaling, realized by multiplication of the newly iteratively resolved

coordinates (either negative or positive) by its sign, provides only nonnegative output in the

plotting results. And this task is being realized with use of 1+sign(X).*X and

1+sign(Y).*Y sub-expressions, respectively.

Basically, one readily needs purely random or pseudo-random algorithm initialization. For

this aim, one for instance could implement a superior calling function in sub-sessions of

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 4

subsequently realized fractal object generations, with relatively small number of the produced

points, as well as, with purely randomly realized initialization of point’s coordinates: x,y.

Therefore, for this aim, one implemented a script ferns.m, which reciprocally calls two

functions both from script fern_rand.m, and from script fern_rand_jet.m:

Fig.4Exemplary given superior script ferns.m, in generation of the famous fern leaf

Implementation code embedded within fern_rand.m script, basically does not differs

from the former one, presented on figure 1 above. The starting values are tailored randomly

from within range [1,17] and [1,23] respectively. Due to random choose, in each of the

iterations, accordingly to the sub-elements of the contents of vectors, derived from A..F

matrices, it is possible to ‘fulfill’ some peripheral elements-regions of the famous fern leaf,

which could not be ‘acquired’, even with use of extensively enlarged number of iterations,

performed in one global generation session, with use of fern.m script. Next to this, calling of

function realized in the second script fern_rand_jet.m, presents itself, as some kind of

algorithmic colorization of the surface of the famous fern leaf with use of

predefined/imbedded color palette jet. (Matlab – 6.5 and 7.1 environmental versions).

Implicitly assumed, cold and hot colors in color palette applied, are usually used in

indications of height points locations on any 3D plots, which are lower and higher

respectively, accordingly to JET palette scheme.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 5

In such a case (figure 6B) one decided to divide the 64-graded JET palette into two parts

(each of the 31-elements) and to adopt them to impose colored pattern on two generated fern

leafs, accordingly to Y coordinate of the wandering point (which is iteratively resolved).

In the result, in the following superior script one inlets some mixed contributions of the

RGB components from calling of the two inferior scripts.

Fig.5 Exemplary given code of interior calling ferns_rand.m, in generation of famous fern leaf

Exemplary code presented on figure 6 is slightly extended with extra calculations of currently

resolved color, originated from JET palette (within one of the two intervals, accordingly to Y

coordinates and either left or right screen panels, respectively):

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 6

Fig 6A JET palette with contributions derived from another bounded color palette, inadvertently results in

disruptive color changing on right sided panel (right fern leaf colored with hot colors)

Rys6B Exemplary given code for interior callling of ferns_rand_jet.m script,

 in the generation of the famous fern leaf.

Resuming this part of the currently provided lecture (lecture number 5), it could be said, that

there were no simple recipe for migrating process from C/C++ languages, accordingly to the

already existed implementations or even programmers’ thinking, into Matlab programming

environmental specifics, in programming practice, variable handling etc.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 7

Likewise, firstly made superstitions, mostly invalid, made ad hoc, at first glance, accordingly

to this or that function, in performing some specifically aimed task, usually requires later

some practice and exhaustive and watchful verification process, as it was in case of creation

of some particular mixture of data colors, derived from two distinct functions, both used in

generation process of the very same fractal object. It seemed, that calling of the function

imadd would suffice, and moreover it seemed that the contents of the two images would be to

be simply summed up. However in practice, it occurred that this tiny and apparently

unimportant, inferior task were to be solved as watchfully, as the main superior task.

In relation to contents for the former lectures (number 4A and 4B) one decided to present

below some script, which demonstrates progressive image quality deteriorations, as the

functions of narrowed set of information, extracted based on processing with use of Discrete

Cosine Transform (DCT)

Usually, there occurs this or that demo-script, performed on quite interactive level, which

could serve for educational aim. However this time, contents of the script dctmovie, which

is presented below, creates two animations, written on hard disk. One of them visualizes

variable quality of the 2D image after performing simple transformation based on a) DCT

(spectral data representation) b) reduction of set of DCT coefficients, c) realization of the

inverse DCT (IDCT):

Fig. 7 Exemplary given code dctmovie.m, for animation, which visualizes

the progressive deterioration in quality of the 2D image contents

Second animation presents itself a binarized map of DCT coefficients, and it aims to visualize

contributions of the DCT coefficients in loose DCT 2D image recreation (i.e. with use of both

DCT and IDCT transforms, and set of coefficients contractions, realized between these two

stage of data processing).

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 8

Fig. 8 Fifteen frames of animation in form of sub-plots, as the results of performance

of loose DCT compression, due to script’s calling, which is presented above, on figure 7

On figure 8 above, the progressive deterioration of the quality of 2D intesity image has been

presented, with upper limit for the value of the DCT coefficients set at 600, with 300 by 300

pixels of data of 2D image being processed.

Fig. 9 Fifteen frames of animation, analogously generated, accordingly to the results on figure 8 above,.

which present themselves the very DCT coefficients, in form of white pixels, and which are selected

for further data processing, in function of the progressive data set contraction (i.e. with increasing level

of loose compression with use of DCT/IDCT transforms).

Based on comparison of the results, both presented on figure 8 and 9, respectively, including

both quality of the 2D image recreated, and range of the set of the DCT coefficients selected

for further stage of data processing one could say, that the whole performance of the loose

DCT compression is quite efficient.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 9

Fig.10 Visualization of some results of calling of some script,

based in data processing on Fast Fourier Transform

On one hand, the analyzed series of the recreated 2D images, presented on figure 8, do not

indicate for dramatic deterioration in the output image quality. Simultaneously, on another

hand, the range of the DCT coefficients selected can be seriously contracted. Analogously,

with use of visualization in form of the generated animation, one decided to present as well

some potential possibilities of application Fast Fourier Transform (however without

presentation here of any output results).

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 10

Introductory lectures no 6A&B<lectures realized in 2006, now rendered in English>
on Basics of Data Processing

(Matlab 6.x, 7.x environment’s examples on visualization topics, continued…)
Within frame of lectures, concluding some introductory notions and talks about possible

applications of functions, derived from Image Processing Toolbox in Matlab environment,

one decided to slightly extend the analysis of the formulas and rules concerning generation

process of fractal motifs. The notion: object, as well as, notion: fractal motif, both these will

be used here, as the visual aspect of some output result (results iteratively resolved on screen

for fractal’s creator or programmer), in opposition to strict formula, that is plainly rendered,

and interpreted, as mere mathematical relationship.

In the formerly given lecture (lecture no 5, presented on a verge of the two spring’s months:

April/May 2006, on topics: visualization examples) one gave simple formula for generation

of the famous Sierpinsky triangle, with use of script: triangle.m (another, less commonly

adopted term to name it, is for instance: Sierpinsky gasket), fern leaf with use of script:

fern.m and silhouette of the famous dragon, with use of script: drag.m.

FyDxCy

EyBxAx

iii

iii

++=

++=

+

+

**

**

1

1
 (1)

If one had started the analysis of the more embedded common sense or logics in values and

arrangements of the coefficients in tables A..F, for the last two scripts’ examples, this

would probably have led the programmers to nothing relevant. But our aim of the following

considerations in this matter, is to obtain the most generic clues about how in consciously

and at least partially in controlled manner generate or form new fractal objects:

Fig. 1 Header of the script fern.m given with values of one-dimensional tables: A, B, C, D, E, F

Fig. 2 Header of the script drag.m given with values of one-dimensional tables: A, B, C, D, E, F

On the other hand, few moments bestowed to pondering on, as to how to tailor coefficients

in tables A..F for first script triangle.m, give instant illumination and conclusion:

Fig. 3 Header of the script triangle.m given with the values of one-dimensional tables: A, B, C, D, E, F

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 11

The coefficients from tables E i F , now have become some inherently embedded set of

coordinates, randomly chosen, in spanning operation of the sub-regions on XY plane. Within

this sub-region, the point, of iteratively resolved coordinates, moves while drawing fractal’s

motif. One can notice, that shape of the famous Sierpinsky gasket, that means - its outline in

from of regular triangle, spanned between points (0.0, 0), (1.0, 0.0) and (0.5, 0.5), directly

originates from values of the x and y coordinates, taken column-wisely from matrices: E i F.

What is more, one could say, that there were no skew correlations in calculations of the

currently iteratively resolved x coordinate, accordingly to the currently resolved y coordinate,

originated from the former iteration (coefficients of B table are actually equal to zero).

Likewise, one could say, that there were no skew correlations, between currently iteratively

resolved y coordinate, accordingly to x coordinate, originated from the former iterations. That

means the coefficients of C table are also equal to zero.

In case of the A and D tables, their coefficients constitute themselves some set of randomly

chosen (from iteration to another iteration) contraction coefficients of the currently drawn

point. These contraction operations mean, that the iteratively resolved coordinates, from one

iteration to another, are constantly subdued to contraction operation, between some (x, y)

coordinates, determined in the former iteration, and the origin of the coordinates set, that

means point (0, 0). They could be called also the coefficients of the linear correlation,

because they take into account solely a relationship between x coordinates from one to

another iterations, as well as, they take also into account a relationship between y coordinates

from one to another iterations. In case of the script triangle.m, these values (of x and y

coordinates) are idempotent, and are equal to 0.5. That means, that from iteration to another

iteration, each of the former coordinate values (both x and y) are multiplicatively shortened by

half (obviously, not taking into account the influences of another coefficients, here playing

only a additive character, see relationship (1)).

On the other hand, from time to time, the coefficients’ values from tables E i F, renders the

whole drawing process, of the iteratively resolved point’s coordinates, similar to situation,

where the algorithm starts from the beginning, except this, that the point is being drawn on the

very outskirts of the whole fractal object. For the object drawn with use of script

triangle.m , these are the following 3 points: (1.0, 0.5) or (0.5, 0.5) or (0.0, 0.0).

Therefore, concluding the considered case with the involved relationship (1), in drawing

fractal objects, one deals with two distinct and mutually opposite phenomena, which should

be preserved in balance from one iteration to another, giving in the result some specific aspect

the output fractal object. Firstly, there is a phenomenon of expansion or spanning of the

iteratively resolved (x, y) coordinates, based on spanning of coordinates, which iteratively

lead to expansion of values of coordinates, for the point, which is wandering on XY plane.

And for this, the coefficients of the E and F tables are responsible (of the additive character).

Secondly, another phenomenon, opposite to the former, is the contraction of the iteratively

resolved (x, y) coordinates, which are drawn between one of the spanning point somewhere on

the XY plane and origin of the set of coordinates, that means point (0.0, 0.0). And for this the

coefficients of the the A and D tables are responsible.

Based on the concluding remarks and notes presented here above, one can actually derive,

with use of the evolution trial-and-error methods, or more conveniently spoken: one can

generate a totally new brand of fractal motifs.

While proving this hypothesis, actually here below some results of the trials and

experiments have been presented, mostly concerning alternations in contents of the A..F

tables, all of them originally derived from the values, which are in conformity of the famous

Sierpinsky triangle generation algorithm.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 12

Presented in this lecture, aspects of the generated fractal objects, have been created, based

on implicit arguments calling, which are available with context-help invocations for the script

named: fract.m (please use this context-help, and highlights-by-clicks and F9 function keys for command invoking):
>> help fract

 Artur Bernat all rights reserved
 12 May 2006, triangle's fractal with stochastic transforms.
 [M,im_final]=fract(szx,szy,magnif,iter,nop,opts,DoF,x0,y0);
 szy,szx <=dimensions of 2D map(output size doubled in x)
 magnif <=magnification coeff. for the figure
 iter <=number of iteraton,
 nop <=number of intervals in getting of frames
 opts <=number of matrix of linear transformation coefficients
 DoF <=DoF in choosing of coefficients in random walks
 x0,y0 <=coords. starting points,default: (0,0) middle of the screen
 [M,img]=fract(300,450,180,90000,16,0,3,-0.5,-1); %DEFAULT TRIANGLE NO.0
 [M,img]=fract(300,450,175,90000,16,1,5,-0.4,-1);%default params.FRACT.no.1
 [M,img]=fract(300,450,175,90000,16,2,3,-0.5,-1);%default params.FRACT.no.2
 [M,img]=fract(300,450,160,90000,16,3,5,-0.6,-1);%default params.FRACT.no.3
 [M,img]=fract(300,450,160,90000,16,4,4,-0.6,-1);%def. call prms.FRACT.no.4
 [M,img]=fract(300,450,175,90000,16,5,5,-0.6,-1);%def. call prms.FRACT.no.5
 [M,img]=fract(300,450,75,90000,16,6,5); %default call params. fract.no.6
 [M,img]=fract(300,450,125,90000,16,6,4); %default call params. fract.no.6B
 [M,img]=fract(300,450,125,60000,16,6,6); %default call params. fract.no.6C

 [M,img]=fract(300,450,125,60000,16,6,5); %default call params. fract.no.6D

Fig.1 Initially obtained, doubled image of the famous Sierpinksy triangle,

 option no 0 of implicitly given argument list in script fract.m

With slightly alternated values for the coefficients in rows 5
th

 and 6
th

 in MAT1 matrix

(and this corresponds to E i F tables in the formerly considered script triangle.m), one can

actually obtain extra fluctuations in color of the merged famous Sierpinsky triangle.

�����������	
���
��������������
������
	�������
	����������
�����������������������������������

��������
��������	�������������������������������������

� �
��
	�������������������
�������������������������

� ����� ������� �� �� ��������� �
�!������� ��� ����� �
���� �
�����
� ��������� ���� "��
�� ����

�����#�	
����������
����
	��
������������������	
����������
	���������������������������������$�

�����"
	�������������������
	�������
������������������
������
����������
	����������������

�
����������#�

� �����������"������
����������������������#��������������	����
� ���%&'�

(((((((((�

�������� ��������
	����������
�����	����
����������
���������!
��� ������� �����������
����!���������

�
����������������� �������
����������
	� ������ ���	��������������� �� ������
����� �
���
��������
	� ����

���	��
����	�'�������������
��	���������
�������
������	������������������������������'�

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 13

Fig.2 The generation of the object, accordingly to argument calling list with use of script fract.m

 for option no 1 (first implicitly given set of arguments)

Yet, slightly other and distinct coefficients’ values for the matrix MAT2 in script fract.m ,

in relation to matrix MAT1 in 5
th

 and 6
th

 row, create possibilities for generation of the

discussed object in skew direction, accordingly to XY plane. What’s left, is the question,

whether it is really perspective shortening (in 3D space), or merely skew distortions on XY

reference plane.

Fig.3 The generation of the object, accordingly to script fract.m

 for option no 2 with implicitly defined calling argument list

So far, the coefficients responsible for skew correlations, (which should determine

multiplicative influences of x on y and y on x coordinates) were zeroed. However, if one

introduced non-zeroed values into one of the columns in the second row of the matrix MAT3

and moreover in one of the columns in the third row of the matrix MAT3, then for the first

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 14

time, the whole generation scheme in algorithms of the famous Sierpinsky triangle would be

seriously changed:

Rys.4 The generation of the object, accordingly to the script fract.m

 for option no 3 in implicitly given calling argument list

Moreover, a little much more boldly put trials and experiments with alternation of the rest

of the coefficients, responsible for skew correlations phenomena, lead to another, distinctly

innovative relationship. Though, firstly it should be said, that it is a solution with decreased

number of degree of freedom, in randomly realized selection of all of the coefficients from

within elements of MAT4 matrix. So far in the considerations, related here in extensively

above in this lecture, the degree of freedom was equal to 3, 5, 3 and 5, from one example of

implementation to another, respectively. But, currently it is below 5, and it is actually set to be

equal to 4.

Fig.5 The generation of the object accordingly to the script fract.m

for the option no 4 of implicitly defined calling argument list

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 15

Now, currently, there will be introduced clearly distinct values of the coefficients, which are

responsible for occurring of linear correlations. In another words, the values of coefficients,

which play a role in contracting of the iteratively resolved coordinates, down to point (0, 0).

Let it be of course values 0.25 and 0.5 in various columns of the 1
st
 and 4

th
 rows of MAT5

matrix, with obviously preserved, so far made alternations of some of elements, already

existed in MAT4 matrix, which had been gradually introduced in former examples:

Fig.6 The generation of the object, accordingly to the script fract.m

 with option no 5 of implicitly defined calling argument list

Finally, in option no 6 of the implicitly defined and exemplary given argument calling list,

for the scripts fract.m, one actually adopts rule of arithmetic average, which is roughly

equal or nearly equal to zero, for the 2
nd

 and 3
rd

 row of the MAT6 matrix (and these are

coefficients of the skew correlations) and moreover: for the 5
th

 and 6
th

 rows of the MAT6

matrix (and these are the coefficients, which determine size of the sub-region, within which

there is spanned trajectory of the iteratively resolved coordinates of the currently drawn

point).

���������������
��������������� �������������!���
���!����
����
�����
���
��
������
	�

�
������!��
���
���	
��������!�����
����������������������)���
���
	�����������
������

!���� �
������� ������ !�� �
���
	� ���� ���������� �
������ �
����� ������ �� ���� ����

��
�����������
��
��������"��������������#����������	����
'�

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 16

Fig.7 The generation of the object, accordingly to the script fract.m

 for the option no 6, with implicitly defined calling argument list

Introducing of both positive and negative coefficients’ values, and alternations in both rows

of linear correlations, and in rows of skew correlations, and moreover in rows of the

spanning functions for the regions, occupied by the drawn object, give altogether in the result

the outputs totally dissimilar to the famous Sierpinsky triangle. The above resulted object

(presented on figure 7) has been obtained for the matrix MAT6, of coefficients, at number of

degree of freedom equal to 5. However, there are also some predefined calling argument lists,

implicitly tagged, as options no 6B, 6C and 6D. In invocations of the option no

 6B, the degree of freedom has been decreased from 5 to 4.

Fig.8 The generation of the object, accordingly to the script fract.m

 with the option no 6B, of implicitly defined calling argument list

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 17

Lastly, in next calling argument list, implicitly tagged as option no 6C, the degree of

freedom has been set on value equal to 6, at the very same magnification coefficient, as

defined previously, in the case with output results presented on figure 8:

Fig.9 The generation of the object, with use of the script fract.m

 with option no 6C, of implicitly defined calling argument list

Finally, one more approach of implicitly defined calling argument list, tagged as 6D:

Fig.10 The generation of the object, with use of the script fract.m

 with option no 6D, of implicitly defined calling argument list

Distinctly set, another from the previously used, magnification coefficient, too large

accordingly to the displayed outlines of the objects on the computer screen, would provoke

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 18

occurrence of extra phenomenon: the reflecting of parts of the drawn object, while

coordinates of the iteratively resolved point simply clash with screen’s four edges.

Fig. 11 First page of the printout, for the script fract.m

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 19

Fig.12 Second page of printout, for the script fract.m

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 20

Thus, the very same set of parameters, but with distinct magnification coefficient, may

result in producing quite different leading motif of the created fractal object, due to

unavoidable interference of four edges of computer screen with randomly wandering drawing

point.

Fig. 13 Third page of printout, for the script fract.m

Resuming, the final visual aspect of the fractal object created is determined by:

1) values of set of coefficients of linear correlations (example with script formerly tagged

as triangle.m , with 1D tables A and D)

2) values of set of coefficients of skew correlations (example with script formerly tagged as

triangle.m , with 1D tables B and C)

3) values of set of coefficients, used in function of spanning sub-regions, within which the

trajectory of the iteratively resolved point’s coordinates is being obtained for the particular

fractal object (example with script formerly tagged as triangle.m with 1D tables E and F)

Moreover, some important role plays also:

a) uniformity/non-uniformity of values of coefficients, taken into account row-wisely in

MAT matrix of 6 by 6 elements (such a matrix, is basically used in transformation in

implementation of the script fract.m)

b) positive /non-positive values of coefficients in each of the rows of MAT matrix

c) arithmetic average equal to or not equal to zero in all rows of matrix MAT

d) and potentially: std of values of coefficients in each of the rows of matrix MAT

Another concluding remarks:

a) with bigger degree of freedom, in random choosing of coefficients, one can possibly render

task of introducing yet unknown, therefore innovative leading motifs of the created fractal

object, much more easily; and such an object probably is characterized by some constant

inherently embedded fractal dimensions, for there do occur with distinct saliency the features

of self-similarities of sub-parts of the object, in relation to the whole object area,

b) one should also note, that increased number of degree of freedom, renders whole

generation process more risky, accordingly to saliency and stability of the leading motifs,

within areas of the generated fractal object,

c) based on increased number of degree of freedom, one would be able to consciously span

this created fractal object on a bunch of several flat geometrical figures, i.e. triangles, rhombs,

squares, pentagrams, hexagons, etc,

d) after series of initially realized analyses here on plane in this lectures, there are some

substantial clues for starting analogously realized tasks, but in 3D space, or more generally in

multi-dimensional space data representations, i.e. in R
n
,

e) there does exist possibility for realization of spanning/contracting coordinates’ function of

the drawn point for the created fractal object, so does also there exist possibility for setting

another non-zeroed in its coordinates point, i.e. there exists possibility for establishment

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 21

another nonzero ‘atractor’ in one of the two basic operand’s function, i.e. in contraction of

point’s coordinates.

For the case of the 3D space, the relationship (1) would be rendered as the following

(accordingly to author’s knowledge, concepts and intuition, a few years ago):

LzIyHxGz

KzFyExDy

JzCyBxAx

iiii

iiii

iiii

+++=

+++=

+++=

+

+

+

1

1

1

 (2)

Obviously, there is readily need for checking another trivial possibility, like this - the

expected coordinates value on x and y coordinates, respectively:

FyyDyxCy

ExyBxxAx

EyEExE

EyEExE

iiiii

iiiii

+−+−=

+−+−=

+

+

2

2

1

2

2

1

)(**)(**

)(**)(**
 (3)

The relationship presented here above, should include moments of the second order, as the

some kind of short term memories or trails of the previously determined trajectory of the

drawn points, of coordinates iteratively resolved, with influence of lengths of this memory on

leading motifs for the newly generated object.

This would be expected value, counted from within totally taken set of coordinates in whole

trajectory of iteratively resolved points, or the expected values for the short term memories,

with only a few of them (i.e. previously visited coordinates on screen) taken into account.

Likewise, biased or unbiased estimator of the expected value of the coordinates of the points

iteratively resolved, would contribute some distinct differences.

Just one more approach in trials and experiments - the proposed approach however, has not

been yet extensively tested. This what is idempotent with (3):

FyyDyxCy

ExyBxxAx

EyEExE

EyEExE

iiiii

iiiii

+−+−=

+−+−=

+

+

2

2

1

2

2

1

)(**)(**

)(**)(**
, (4)

should actually be provided with another self-contracting mechanism in movements of point’s

coordinates iteratively resolved:

F

y

yD

y

xCy

E

x

yB

x

xAx

EyEExE

EyEExE

i

i

i

ii

i

i

i

ii

+

−+

+

−+

=

+

−+

+

−+

=

+

+

2

2

______1

2

2

______1

)(1

1
**

)(1

1
**

)(1

1
**

)(1

1
**

 (5)

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 22

Introductory lecture no 6C (continued..)

on Basics of Data Processing
(fractals motifs/objects spanned on trival geometric plan ar figures)

Accordingly to the content of part A of this lecture no 6, one decided to present here some

exemplary introduced fractal objects, generated with 5 and 6 degree of freedom, in random

choosing of the values of coefficients, of both linear and skew correlations (both here

considered with multiplicative character of summing up all of the components), and moreover

in randomly realized selection of values of coefficients, which plays a role of spanning

function of point’s coordinates (iteratively resolved) (and these are the components

considered in additive character).

Due to the fact, that the most important details of implementation, have been already given

in previous part of this lectures, in elucidating the meaning of contents of the scripts:

triangle.m, fern.m, drag.m, fract.m , here below only some extra details will be

presented in much more condensed form. These are the following implicitly defined calling

argument lists of newly implemented scripts: fractpentagram.m and fracthexagon.m.
>> help fractpentagram
 Artur Bernat all rights reserved
 13 May 2006, triangle's fractal with stochastic transforms.
 [M,im_final]=fractpentagram(szx,szy,magnif,iter,nop,opts,DoF,x0,y0);
 szy,szx <=dimensions of 2D map(output size doubled in x)
 magnif <=magnification coeff. for the figure
 iter <=number of iteraton,
 nop <=number of intervals in getting of frames
 opts <=number of matrix of linear transformation coefficients
 DoF <=DoF in choosing of coefficients in random walks
 x0,y0 <=coords. starting points,default: (0,0) middle of the screen
 [M,img]=fractpentagram(300,450,180,90000,16,0,3,-0.5,-1); %DEFAULT TRIANGLE NO.0
 [M,img]=fractpentagram(300,450,75,90000,16,1,4,-0.0,-0.0);%default params.FRACT.no.1A
 [M,img]=fractpentagram(300,450,75,90000,16,1,5,-0.0,-0.0);%default params.FRACT.no.1B
 [M,img]=fractpentagram(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2A
 [M,img]=fractpentagram(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2B
 [M,img]=fractpentagram(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3A
 [M,img]=fractpentagram(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3B
 [M,img]=fractpentagram(300,450,75,90000,16,4,5,-0.0,-0.0);%def. call prms.FRACT.no.4
 [M,img]=fractpentagram(300,450,75,90000,16,5,5,-0.0,-0.0);%def. call prms.FRACT.no.5
 [M,img]=fractpentagram(300,450,75,90000,16,6,6); %default call params. fract.no.6

>> help fracthexagon
 Artur Bernat all rights reserved
 12 May 2006, triangle's fractal with stochastic transforms.
 [M,im_final]=fracthexagon(szx,szy,magnif,iter,nop,opts,DoF,x0,y0);
 szy,szx <=dimensions of 2D map(output size doubled in x)
 magnif <=magnification coeff. for the figure
 iter <=number of iteraton,
 nop <=number of intervals in getting of frames
 opts <=number of matrix of linear transformation coefficients
 DoF <=DoF in choosing of coefficients in random walks
 x0,y0 <=coords. starting points,default: (0,0) middle of the screen
 [M,img]=fracthexagon(300,450,180,90000,16,0,3,-0.5,-1); %DEFAULT TRIANGLE NO.0
 [M,img]=fracthexagon(300,450,75,90000,16,1,4,-0.0,-0.0);%default params.FRACT.no.1A
 [M,img]=fracthexagon(300,450,75,90000,16,1,6,-0.0,-0.0);%default params.FRACT.no.1B
 [M,img]=fracthexagon(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2A
 [M,img]=fracthexagon(300,450,75,90000,16,2,6,-0.0,-0.0);%default params.FRACT.no.2B
 [M,img]=fracthexagon(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3A
 [M,img]=fracthexagon(300,450,75,90000,16,3,6,-0.0,-0.0);%default params.FRACT.no.3B
 [M,img]=fracthexagon(300,450,75,90000,16,4,6,-0.0,-0.0);%def. call prms.FRACT.no.4
 [M,img]=fracthexagon(300,450,75,90000,16,5,5,-0.0,-0.0);%def. call prms.FRACT.no.5
 [M,img]=fracthexagon(300,450,75,90000,16,6,6); %default call params. fract.no.6

Main remark here concerns the fact, that the irregular pentagram has been chosen here, as

an outlines for spanning Sierpinsky-triangle-like fractal object. Possibly, five-arms-star is yet

to be implemented, in much more analogous manner. Anyway, as to the second script, it spans

the region of the fractal object on regular hexagon. Values of the 5
th

 and 6
th

 row, which are

responsible the generation of point’s coordinates (iteratively resolved) are approximated with

3, 4 digits (at decimal base), in accordance to the required the top-most precision in plotting

of the fractal objects. The results of the implicitly defined calling argument lists for each of

two scripts in form of the sub-plotting arrangements on one whole drawing panel, have been

given below:

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 23

Fig. 14 Output results of calling of the script fractpentagram.m

with 9 implicitly defined calling argument list

Fig. 15 Output results of calling of the script fracthexagon.m

with 9 implicitly defined calling arugment list

For implicitly taken 1
st
 and 2

nd
 set of calling argument lists, in case of the two above scripts,

the leading motif, known from construction of the famous Sierpinsky triangle has been

spanned into one half/whole outline of pentagram and hexagon, respectively. For the

implicitly defined 8
th

 and 9
th

 set of calling argument lists, there do occur the most intriguing

and simultaneously complicated patterns or the so-called leading motifs, which however both

of them do preserve some fractal dimension, for these two created fractal objects,

respectively.

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 24

Finally, it is clearly shown, that with decreasing number of degrees of freedom (from 6 to 5)

in script fractpentagram.m, the created fractal objects are slightly better in their esthetics

and overall performance, than in the case of applications of 6 degrees of freedom, as it was in

case of the script fracthexagon.m.

In case of increased number of degree of freedom (above 6), there is also an increased

chance for producing rather random garbage-like-figure, than fractal-like-object. And this last

one, here mentioned, should be characterized by occurrence of salient features of strong self-

similarities of the leading motifs, accordingly to the whole created fractal object.

Here below only parts or some relevant scratches of the whole contents of the two

mentioned contents have been presented. And these two scripts, here newly introduced in part

6B of this lecture, are basically the repetitions of the scripts’ code from the former part of this

lectures. In fact, the most important here are the headers, including matrices of

transformations, with values of coefficients, as well implicitly defined calling argument lists:

Fig. 16 Values of matrices MATn for code script fractpentagram.m

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 25

Fig. 17 Values of matrices MATn for code script fracthexagon.m

����	 �
���	 ��	 ��	 ����	 �������	 �
	 ������	 ��
	 ����	����������	 ��	�����	 ��	������	 ��	�
��	

��������	��������	�
	���	���������	�����	����	��
	 ���������	����	�
�	 �������	��������
���	

���	 ���	 ���	 ���������	 ���
�	 ��	 ��	������������������
���	 ��������	 ��	 ��	
��	

�
�������	 ����	
���	 �����	
�	 �������	 �
����	 ������	 �����	
����	 �����
�	
�	 ����	 ��
	

��������	!"	���	"�#$�	����	���������	������	��		��������	

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 26

%Artur Bernat all rights reserved
%13 May 2006, triangle's fractal with stochastic transforms.

%[M,im_final]=fractpentagram(szx,szy,magnif,iter,nop,opts,DoF,x0,y0);

%szy,szx <=dimensions of 2D map(output size doubled in x)

%magnif <=magnification coeff. for the figure

%iter <=number of iteraton,

%nop <=number of intervals in getting of frames

%opts <=number of matrix of linear transformation coefficients

%DoF <=DoF in choosing of coefficients in random walks

%x0,y0 <=coords. starting points,default: (0,0) middle of the screen

%[M,img]=fractpentagram(300,450,180,90000,16,0,3,-0.5,-1); %DEFAULT TRIANGLE NO.0

%[M,img]=fractpentagram(300,450,75,90000,16,1,4,-0.0,-0.0);%default params.FRACT.no.1A

%[M,img]=fractpentagram(300,450,75,90000,16,1,5,-0.0,-0.0);%default params.FRACT.no.1B

%[M,img]=fractpentagram(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2A

%[M,img]=fractpentagram(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2B

%[M,img]=fractpentagram(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3A

%[M,img]=fractpentagram(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3B

%[M,img]=fractpentagram(300,450,75,90000,16,4,5,-0.0,-0.0);%def. call prms.FRACT.no.4

%[M,img]=fractpentagram(300,450,75,90000,16,5,5,-0.0,-0.0);%def. call prms.FRACT.no.5

%[M,img]=fractpentagram(300,450,75,90000,16,6,6); %default call params. fract.no.6

function [M,im_final]=fractpentagram(szx,szy,magnif,iter,nop,opts,dof,xx0,yy0);

%---

MATA= [0.5 0.5 0.5 0.5 0.5 0.5];%Atest linear transform. coeffs.

MATA=[MATA; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MATA=[MATA; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MATA=[MATA; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MATA=[MATA; 0.0 0.0 0.5 0.0 0.0 0.0];%E

MATA=[MATA; 0.0 1.0 0.5 0.0 0.0 0.0];%F

%---

MAT1= [0.5 0.5 0.5 0.5 0.5 0.5];%A1st linear

transform. coeffs.

MAT1=[MAT1; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT1=[MAT1; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT1=[MAT1; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MAT1=[MAT1; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

MAT1=[MAT1; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

MAT2= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A2nd linear

transform. coeffs.

MAT2=[MAT2; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT2=[MAT2; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT2=[MAT2; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MAT2=[MAT2; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

MAT2=[MAT2; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

MAT3= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A3rd linear

transform. coeffs.

MAT3=[MAT3; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT3=[MAT3; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT3=[MAT3; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT3=[MAT3; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

MAT3=[MAT3; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

MAT4= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A4th linear

transform. coeffs.

MAT4=[MAT4; 0.0 0.0 -0.25 0.25 0.0 0.0];%B

MAT4=[MAT4; 0.25 0.0 0.0 0.0 0.0 -0.25];%C

MAT4=[MAT4; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT4=[MAT4; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

MAT4=[MAT4; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

MAT5= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A5th linear

transform. coeffs.

MAT5=[MAT5; -0.0625 0.125 -0.25 0.25 -0.125 0.0625];%B

MAT5=[MAT5; 0.25 0.0 0.0 0.0 0.0 -0.25];%C

MAT5=[MAT5; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT5=[MAT5; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

MAT5=[MAT5; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

MAT6= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A5th linear

transform. coeffs.

MAT6=[MAT6; -0.0625 0.125 -0.25 0.25 -0.125 0.0625];%B

MAT6=[MAT6; 0.25 -0.125 0.0625 -0.0625 0.125 -0.25];%C

MAT6=[MAT6; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT6=[MAT6; 3725/4379 1/2 -1/2 -3725/4379 0 0];%E%pentagram's

corners

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 27

MAT6=[MAT6; 0 -1556/2261 -1556/2261 0 3725/4379 0];%F

%---

switch opts

 case 0

 MAT=MATA;opts

 case 1

 MAT=MAT1;opts

 case 2

 MAT=MAT2;opts

 case 3

 MAT=MAT3;opts

 case 4

 MAT=MAT4;opts

 case 5

 MAT=MAT5;opts

 case 6

 MAT=MAT6;xx0=0;yy0=0;opts

end;

step=iter/nop;

MAX_TRANSF=dof;

mapsA=zeros(szy,szx);mapsB=zeros(szy,szx);

x=0;y=0;

nrp = ceil(MAX_TRANSF.*rand(1,iter));

[min(nrp(:)) max(nrp(:))]

%background; 1-8 palette's color ;

paltsA=[0.0 0.0 0.0; 0.0 1.0 0.0;0.2 1.0 0.0; 0.5 1.0 0.0;...

 0.8 1.0 0.0;0.7 0.3 0.3; 0.7 0.3 0.2;...

 0.7 0.2 0.0;1.0 0.5 0.0; 0.8 1.0 1.0];

M=moviein(nop+2);

axis manual;

j=0;%control counter for catching of frames

for i=1:iter,

 kolor=uint8(nrp(i));

 xl=MAT(1,kolor).*x+MAT(2,kolor).*y+MAT(5,kolor);

 y =MAT(3,kolor).*x+MAT(4,kolor).*y+MAT(6,kolor);

 x=xl;

 Y=(szy/2+magnif.*(yy0+y));

 X=(szx/2+magnif.*(xx0+x));

 mapsA(uint16(1+sign(Y).*Y),uint16(1+sign(X).*X))=uint8(1+nrp(i));

 mapsB(uint16(1+sign(Y).*Y),uint16(1+sign(X).*X))=uint8(1+nrp(i));

 if mod(i,step)==0

 imshow([fliplr(mapsA(1:szy,1:szx)) mapsB(1:szy,1:szx)],paltsA);

 axis([0 szx + szx 0 szy]); axis manual; j=j+1; [i j]

 M(:,j)=getframe;

 end;

end;

im_final=ind2rgb([fliplr(mapsA(1:szy,1:szx)) mapsB(1:szy,1:szx)],paltsA);

movie(M);

RandName=100+899*rand(1,1);

movie2avi(M,['triangle2hex' int2str(RandName) '.avi'],'compression',...

 'Cinepak','FPS',4);

%close;

Fig. 18 Codescript for fractpentagram.m

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 28

%Artur Bernat all rights reserved

%12 May 2006, triangle's fractal with stochastic transforms.

%[M,im_final]=fracthexagon(szx,szy,magnif,iter,nop,opts,DoF,x0,y0);

%szy,szx <=dimensions of 2D map(output size doubled in x)

%magnif <=magnification coeff. for the figure

%iter <=number of iteraton,

%nop <=number of intervals in getting of frames

%opts <=number of matrix of linear transformation coefficients

%DoF <=DoF in choosing of coefficients in random walks

%x0,y0 <=coords. starting points,default: (0,0) middle of the screen

%[M,img]=fracthexagon(300,450,180,90000,16,0,3,-0.5,-1); %DEFAULT TRIANGLE NO.0

%[M,img]=fracthexagon(300,450,75,90000,16,1,4,-0.0,-0.0);%default params.FRACT.no.1A

%[M,img]=fracthexagon(300,450,75,90000,16,1,6,-0.0,-0.0);%default params.FRACT.no.1B

%[M,img]=fracthexagon(300,450,75,90000,16,2,5,-0.0,-0.0);%default params.FRACT.no.2A

%[M,img]=fracthexagon(300,450,75,90000,16,2,6,-0.0,-0.0);%default params.FRACT.no.2B

%[M,img]=fracthexagon(300,450,75,90000,16,3,5,-0.0,-0.0);%default params.FRACT.no.3A

%[M,img]=fracthexagon(300,450,75,90000,16,3,6,-0.0,-0.0);%default params.FRACT.no.3B

%[M,img]=fracthexagon(300,450,75,90000,16,4,6,-0.0,-0.0);%def. call prms.FRACT.no.4

%[M,img]=fracthexagon(300,450,75,90000,16,5,5,-0.0,-0.0);%def. call prms.FRACT.no.5

%[M,img]=fracthexagon(300,450,75,90000,16,6,6); %default call params. fract.no.6

function [M,im_final]=fracthexagon(szx,szy,magnif,iter,nop,opts,dof,xx0,yy0);

%---

MATA= [0.5 0.5 0.5 0.5 0.5 0.5];%Atest linear transform. coeffs.

MATA=[MATA; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MATA=[MATA; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MATA=[MATA; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MATA=[MATA; 0.0 0.0 0.5 0.0 0.0 0.0];%E

MATA=[MATA; 0.0 1.0 0.5 0.0 0.0 0.0];%F

%---

MAT1= [0.5 0.5 0.5 0.5 0.5 0.5];%A1st linear transform.

coeffs.

MAT1=[MAT1; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT1=[MAT1; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT1=[MAT1; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MAT1=[MAT1; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT1=[MAT1; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

MAT2= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A2nd linear transform.

coeffs.

MAT2=[MAT2; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT2=[MAT2; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT2=[MAT2; 0.5 0.5 0.5 0.5 0.5 0.5];%D

MAT2=[MAT2; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT2=[MAT2; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

MAT3= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A3rd linear transform.

coeffs.

MAT3=[MAT3; 0.0 0.0 0.0 0.0 0.0 0.0];%B

MAT3=[MAT3; 0.0 0.0 0.0 0.0 0.0 0.0];%C

MAT3=[MAT3; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT3=[MAT3; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT3=[MAT3; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

MAT4= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A4th linear transform.

coeffs.

MAT4=[MAT4; 0.0 0.0 -0.25 0.25 0.0 0.0];%B

MAT4=[MAT4; 0.25 0.0 0.0 0.0 0.0 -0.25];%C

MAT4=[MAT4; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT4=[MAT4; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT4=[MAT4; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

MAT5= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A5th linear transform.

coeffs.

MAT5=[MAT5; -0.0625 0.125 -0.25 0.25 -0.125 0.0625];%B

MAT5=[MAT5; 0.25 0.0 0.0 0.0 0.0 -0.25];%C

MAT5=[MAT5; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT5=[MAT5; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT5=[MAT5; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

MAT6= [0.25 0.5 -0.25 -0.25 0.5 0.25];%A5th linear transform.

coeffs.

MAT6=[MAT6; -0.0625 0.125 -0.25 0.25 -0.125 0.0625];%B

MAT6=[MAT6; 0.25 -0.125 0.0625 -0.0625 0.125 -0.25];%C

MAT6=[MAT6; 0.25 0.5 -0.25 -0.25 0.5 0.25];%D

MAT6=[MAT6; 1/2 1.0 1/2 -1/2 -1.0 -1/2];%E

MAT6=[MAT6; 1170/1351 0.0 -1170/1351 -1170/1351 0.0 1170/1351];%F

%---

switch opts

 case 0

 MAT=MATA;opts

 case 1

PhD Eng Artur Bernat, Fine Mechanics Division, Mechanical Faculty of Engineering,

 TU Koszalin, Introductory lectures number: 5, 6A, 6B (Matlab environment), page no: 29

 MAT=MAT1;opts

 case 2

 MAT=MAT2;opts

 case 3

 MAT=MAT3;opts

 case 4

 MAT=MAT4;opts

 case 5

 MAT=MAT5;opts

 case 6

 MAT=MAT6;xx0=0;yy0=0;opts

end;

step=iter/nop;

MAX_TRANSF=dof;

mapsA=zeros(szy,szx);mapsB=zeros(szy,szx);

x=0;y=0;

nrp = ceil(MAX_TRANSF.*rand(1,iter));

[min(nrp(:)) max(nrp(:))]

%background; 1-8 palette's color ;

paltsA=[0.0 0.0 0.0; 0.0 1.0 0.0;0.2 1.0 0.0; 0.5 1.0 0.0;...

 0.8 1.0 0.0;0.7 0.3 0.3; 0.7 0.3 0.2;...

 0.7 0.2 0.0;1.0 0.5 0.0; 0.8 1.0 1.0];

M=moviein(nop+2);

axis manual;

j=0;%control counter for catching of frames

for i=1:iter,

 kolor=uint8(nrp(i));

 xl=MAT(1,kolor).*x+MAT(2,kolor).*y+MAT(5,kolor);

 y =MAT(3,kolor).*x+MAT(4,kolor).*y+MAT(6,kolor);

 x=xl;

 Y=(szy/2+magnif.*(yy0+y));

 X=(szx/2+magnif.*(xx0+x));

 mapsA(uint16(1+sign(Y).*Y),uint16(1+sign(X).*X))=uint8(1+nrp(i));

 mapsB(uint16(1+sign(Y).*Y),uint16(1+sign(X).*X))=uint8(1+nrp(i));

 if mod(i,step)==0

 imshow([fliplr(mapsA(1:szy,1:szx)) mapsB(1:szy,1:szx)],paltsA);

 axis([0 szx + szx 0 szy]); axis manual; j=j+1; [i j]

 M(:,j)=getframe;

 end;

end;

im_final=ind2rgb([fliplr(mapsA(1:szy,1:szx)) mapsB(1:szy,1:szx)],paltsA);

movie(M);

RandName=100+899*rand(1,1);

movie2avi(M,['triangle2hex' int2str(RandName) '.avi'],'compression',...

 'Cinepak','FPS',4);

%close;

Fig. 18 Codescript for fracthexagon.m

